Metamath Proof Explorer


Theorem pythagtriplem10

Description: Lemma for pythagtrip . Show that C - B is positive. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem10 ABCA2+B2=C20<CB

Proof

Step Hyp Ref Expression
1 nnre AA
2 1 3ad2ant1 ABCA
3 nnne0 AA0
4 3 3ad2ant1 ABCA0
5 2 4 sqgt0d ABC0<A2
6 2 resqcld ABCA2
7 nnre BB
8 7 3ad2ant2 ABCB
9 8 resqcld ABCB2
10 6 9 ltaddpos2d ABC0<A2B2<A2+B2
11 5 10 mpbid ABCB2<A2+B2
12 11 adantr ABCA2+B2=C2B2<A2+B2
13 simpr ABCA2+B2=C2A2+B2=C2
14 12 13 breqtrd ABCA2+B2=C2B2<C2
15 8 adantr ABCA2+B2=C2B
16 nnre CC
17 16 3ad2ant3 ABCC
18 17 adantr ABCA2+B2=C2C
19 nnnn0 BB0
20 19 nn0ge0d B0B
21 20 3ad2ant2 ABC0B
22 21 adantr ABCA2+B2=C20B
23 nnnn0 CC0
24 23 nn0ge0d C0C
25 24 3ad2ant3 ABC0C
26 25 adantr ABCA2+B2=C20C
27 15 18 22 26 lt2sqd ABCA2+B2=C2B<CB2<C2
28 14 27 mpbird ABCA2+B2=C2B<C
29 15 18 posdifd ABCA2+B2=C2B<C0<CB
30 28 29 mpbid ABCA2+B2=C20<CB