Description: Lemma for pythagtrip . Show that C - B is positive. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pythagtriplem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | |
|
2 | 1 | 3ad2ant1 | |
3 | nnne0 | |
|
4 | 3 | 3ad2ant1 | |
5 | 2 4 | sqgt0d | |
6 | 2 | resqcld | |
7 | nnre | |
|
8 | 7 | 3ad2ant2 | |
9 | 8 | resqcld | |
10 | 6 9 | ltaddpos2d | |
11 | 5 10 | mpbid | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 12 13 | breqtrd | |
15 | 8 | adantr | |
16 | nnre | |
|
17 | 16 | 3ad2ant3 | |
18 | 17 | adantr | |
19 | nnnn0 | |
|
20 | 19 | nn0ge0d | |
21 | 20 | 3ad2ant2 | |
22 | 21 | adantr | |
23 | nnnn0 | |
|
24 | 23 | nn0ge0d | |
25 | 24 | 3ad2ant3 | |
26 | 25 | adantr | |
27 | 15 18 22 26 | lt2sqd | |
28 | 14 27 | mpbird | |
29 | 15 18 | posdifd | |
30 | 28 29 | mpbid | |