| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
| 3 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A =/= 0 ) |
| 5 |
2 4
|
sqgt0d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( A ^ 2 ) ) |
| 6 |
2
|
resqcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. RR ) |
| 7 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. RR ) |
| 9 |
8
|
resqcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. RR ) |
| 10 |
6 9
|
ltaddpos2d |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 0 < ( A ^ 2 ) <-> ( B ^ 2 ) < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 11 |
5 10
|
mpbid |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B ^ 2 ) < ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 13 |
|
simpr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
| 14 |
12 13
|
breqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B ^ 2 ) < ( C ^ 2 ) ) |
| 15 |
8
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. RR ) |
| 16 |
|
nnre |
|- ( C e. NN -> C e. RR ) |
| 17 |
16
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. RR ) |
| 18 |
17
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> C e. RR ) |
| 19 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
| 20 |
19
|
nn0ge0d |
|- ( B e. NN -> 0 <_ B ) |
| 21 |
20
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ B ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 <_ B ) |
| 23 |
|
nnnn0 |
|- ( C e. NN -> C e. NN0 ) |
| 24 |
23
|
nn0ge0d |
|- ( C e. NN -> 0 <_ C ) |
| 25 |
24
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ C ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 <_ C ) |
| 27 |
15 18 22 26
|
lt2sqd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B < C <-> ( B ^ 2 ) < ( C ^ 2 ) ) ) |
| 28 |
14 27
|
mpbird |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B < C ) |
| 29 |
15 18
|
posdifd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( B < C <-> 0 < ( C - B ) ) ) |
| 30 |
28 29
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |