Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem3.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
flt4lem3.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
flt4lem3.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
flt4lem3.1 |
⊢ ( 𝜑 → 2 ∥ 𝐴 ) |
5 |
|
flt4lem3.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
6 |
|
flt4lem3.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
7 |
3
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
8 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
9 |
7 8
|
zaddcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐴 ) ∈ ℤ ) |
10 |
7 8
|
zsubcld |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) ∈ ℤ ) |
11 |
9 10
|
gcdcomd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐴 ) gcd ( 𝐶 − 𝐴 ) ) = ( ( 𝐶 − 𝐴 ) gcd ( 𝐶 + 𝐴 ) ) ) |
12 |
1 2 3 4 5 6
|
flt4lem2 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐵 ) |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
13
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
15 |
1 2 3 5 6
|
fltabcoprm |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
16 |
1 2 3 14 6 15
|
fltbccoprm |
⊢ ( 𝜑 → ( 𝐵 gcd 𝐶 ) = 1 ) |
17 |
2
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
18 |
17
|
nncnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
19 |
1
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
20 |
19
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
21 |
18 20
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
22 |
21 6
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
23 |
2 1 3 12 16 22
|
flt4lem1 |
⊢ ( 𝜑 → ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐵 gcd 𝐴 ) = 1 ∧ ¬ 2 ∥ 𝐵 ) ) ) |
24 |
|
pythagtriplem4 |
⊢ ( ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐵 gcd 𝐴 ) = 1 ∧ ¬ 2 ∥ 𝐵 ) ) → ( ( 𝐶 − 𝐴 ) gcd ( 𝐶 + 𝐴 ) ) = 1 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 − 𝐴 ) gcd ( 𝐶 + 𝐴 ) ) = 1 ) |
26 |
11 25
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐴 ) gcd ( 𝐶 − 𝐴 ) ) = 1 ) |