| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flt4lem3.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | flt4lem3.b | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 3 |  | flt4lem3.c | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
						
							| 4 |  | flt4lem3.1 | ⊢ ( 𝜑  →  2  ∥  𝐴 ) | 
						
							| 5 |  | flt4lem3.2 | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐶 )  =  1 ) | 
						
							| 6 |  | flt4lem3.3 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 7 | 3 | nnzd | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 8 | 1 | nnzd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 9 | 7 8 | zaddcld | ⊢ ( 𝜑  →  ( 𝐶  +  𝐴 )  ∈  ℤ ) | 
						
							| 10 | 7 8 | zsubcld | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  ∈  ℤ ) | 
						
							| 11 | 9 10 | gcdcomd | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐴 )  gcd  ( 𝐶  −  𝐴 ) )  =  ( ( 𝐶  −  𝐴 )  gcd  ( 𝐶  +  𝐴 ) ) ) | 
						
							| 12 | 1 2 3 4 5 6 | flt4lem2 | ⊢ ( 𝜑  →  ¬  2  ∥  𝐵 ) | 
						
							| 13 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ0 ) | 
						
							| 15 | 1 2 3 5 6 | fltabcoprm | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  =  1 ) | 
						
							| 16 | 1 2 3 14 6 15 | fltbccoprm | ⊢ ( 𝜑  →  ( 𝐵  gcd  𝐶 )  =  1 ) | 
						
							| 17 | 2 | nnsqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℕ ) | 
						
							| 18 | 17 | nncnd | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 19 | 1 | nnsqcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℕ ) | 
						
							| 20 | 19 | nncnd | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 21 | 18 20 | addcomd | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 22 | 21 6 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 23 | 2 1 3 12 16 22 | flt4lem1 | ⊢ ( 𝜑  →  ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐵  gcd  𝐴 )  =  1  ∧  ¬  2  ∥  𝐵 ) ) ) | 
						
							| 24 |  | pythagtriplem4 | ⊢ ( ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐵 ↑ 2 )  +  ( 𝐴 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐵  gcd  𝐴 )  =  1  ∧  ¬  2  ∥  𝐵 ) )  →  ( ( 𝐶  −  𝐴 )  gcd  ( 𝐶  +  𝐴 ) )  =  1 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  ( ( 𝐶  −  𝐴 )  gcd  ( 𝐶  +  𝐴 ) )  =  1 ) | 
						
							| 26 | 11 25 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐶  +  𝐴 )  gcd  ( 𝐶  −  𝐴 ) )  =  1 ) |