Metamath Proof Explorer


Theorem ncoprmgcdne1b

Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion ncoprmgcdne1b ABi2iAiBAgcdB1

Proof

Step Hyp Ref Expression
1 eluz2nn i2i
2 1 adantr i2iAiBi
3 eluz2b3 i2ii1
4 neneq i1¬i=1
5 3 4 simplbiim i2¬i=1
6 5 anim1ci i2iAiBiAiB¬i=1
7 2 6 jca i2iAiBiiAiB¬i=1
8 neqne ¬i=1i1
9 8 anim1ci ¬i=1iii1
10 9 3 sylibr ¬i=1ii2
11 10 ex ¬i=1ii2
12 11 adantl iAiB¬i=1ii2
13 12 impcom iiAiB¬i=1i2
14 13 adantl ABiiAiB¬i=1i2
15 simprrl ABiiAiB¬i=1iAiB
16 14 15 jca ABiiAiB¬i=1i2iAiB
17 16 ex ABiiAiB¬i=1i2iAiB
18 7 17 impbid2 ABi2iAiBiiAiB¬i=1
19 18 rexbidv2 ABi2iAiBiiAiB¬i=1
20 rexanali iiAiB¬i=1¬iiAiBi=1
21 20 a1i ABiiAiB¬i=1¬iiAiBi=1
22 coprmgcdb ABiiAiBi=1AgcdB=1
23 22 necon3bbid AB¬iiAiBi=1AgcdB1
24 19 21 23 3bitrd ABi2iAiBAgcdB1