Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ncoprmgcdne1b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn | |
|
2 | 1 | adantr | |
3 | eluz2b3 | |
|
4 | neneq | |
|
5 | 3 4 | simplbiim | |
6 | 5 | anim1ci | |
7 | 2 6 | jca | |
8 | neqne | |
|
9 | 8 | anim1ci | |
10 | 9 3 | sylibr | |
11 | 10 | ex | |
12 | 11 | adantl | |
13 | 12 | impcom | |
14 | 13 | adantl | |
15 | simprrl | |
|
16 | 14 15 | jca | |
17 | 16 | ex | |
18 | 7 17 | impbid2 | |
19 | 18 | rexbidv2 | |
20 | rexanali | |
|
21 | 20 | a1i | |
22 | coprmgcdb | |
|
23 | 22 | necon3bbid | |
24 | 19 21 23 | 3bitrd | |