Metamath Proof Explorer


Theorem mvrrsubd

Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses mvrrsubd.a ( 𝜑𝐵 ∈ ℂ )
mvrrsubd.b ( 𝜑𝐶 ∈ ℂ )
mvrrsubd.1 ( 𝜑𝐴 = ( 𝐵𝐶 ) )
Assertion mvrrsubd ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 mvrrsubd.a ( 𝜑𝐵 ∈ ℂ )
2 mvrrsubd.b ( 𝜑𝐶 ∈ ℂ )
3 mvrrsubd.1 ( 𝜑𝐴 = ( 𝐵𝐶 ) )
4 1 2 subcld ( 𝜑 → ( 𝐵𝐶 ) ∈ ℂ )
5 3 4 eqeltrd ( 𝜑𝐴 ∈ ℂ )
6 5 2 addcld ( 𝜑 → ( 𝐴 + 𝐶 ) ∈ ℂ )
7 5 2 pncand ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = 𝐴 )
8 7 3 eqtrd ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = ( 𝐵𝐶 ) )
9 6 1 2 8 subcan2d ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 )