Metamath Proof Explorer
Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse
of mvlraddd . (Contributed by SN, 21-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
mvrrsubd.a |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
mvrrsubd.b |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
|
|
mvrrsubd.1 |
⊢ ( 𝜑 → 𝐴 = ( 𝐵 − 𝐶 ) ) |
|
Assertion |
mvrrsubd |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mvrrsubd.a |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
2 |
|
mvrrsubd.b |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
3 |
|
mvrrsubd.1 |
⊢ ( 𝜑 → 𝐴 = ( 𝐵 − 𝐶 ) ) |
4 |
1 2
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
5 |
3 4
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
6 |
5 2
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
7 |
5 2
|
pncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = 𝐴 ) |
8 |
7 3
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
9 |
6 1 2 8
|
subcan2d |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 ) |