Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd .
EDITORIAL: Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrrsubd.a | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| mvrrsubd.b | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| mvrrsubd.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 − 𝐶 ) ) | ||
| Assertion | mvrrsubd | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrrsubd.a | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 2 | mvrrsubd.b | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 3 | mvrrsubd.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 − 𝐶 ) ) | |
| 4 | 1 2 | subcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 5 | 3 4 | eqeltrd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 6 | 5 2 | addcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
| 7 | 5 2 | pncand | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = 𝐴 ) |
| 8 | 7 3 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 9 | 6 1 2 8 | subcan2d | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 ) |