Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd .
EDITORIAL: Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mvrrsubd.a | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
mvrrsubd.b | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
mvrrsubd.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 − 𝐶 ) ) | ||
Assertion | mvrrsubd | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrrsubd.a | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
2 | mvrrsubd.b | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
3 | mvrrsubd.1 | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 − 𝐶 ) ) | |
4 | 1 2 | subcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
5 | 3 4 | eqeltrd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
6 | 5 2 | addcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
7 | 5 2 | pncand | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = 𝐴 ) |
8 | 7 3 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
9 | 6 1 2 8 | subcan2d | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = 𝐵 ) |