Metamath Proof Explorer


Theorem mvrrsubd

Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses mvrrsubd.a
|- ( ph -> B e. CC )
mvrrsubd.b
|- ( ph -> C e. CC )
mvrrsubd.1
|- ( ph -> A = ( B - C ) )
Assertion mvrrsubd
|- ( ph -> ( A + C ) = B )

Proof

Step Hyp Ref Expression
1 mvrrsubd.a
 |-  ( ph -> B e. CC )
2 mvrrsubd.b
 |-  ( ph -> C e. CC )
3 mvrrsubd.1
 |-  ( ph -> A = ( B - C ) )
4 1 2 subcld
 |-  ( ph -> ( B - C ) e. CC )
5 3 4 eqeltrd
 |-  ( ph -> A e. CC )
6 5 2 addcld
 |-  ( ph -> ( A + C ) e. CC )
7 5 2 pncand
 |-  ( ph -> ( ( A + C ) - C ) = A )
8 7 3 eqtrd
 |-  ( ph -> ( ( A + C ) - C ) = ( B - C ) )
9 6 1 2 8 subcan2d
 |-  ( ph -> ( A + C ) = B )