Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd . (Contributed by SN, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mvrrsubd.a | |- ( ph -> B e. CC ) |
|
mvrrsubd.b | |- ( ph -> C e. CC ) |
||
mvrrsubd.1 | |- ( ph -> A = ( B - C ) ) |
||
Assertion | mvrrsubd | |- ( ph -> ( A + C ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrrsubd.a | |- ( ph -> B e. CC ) |
|
2 | mvrrsubd.b | |- ( ph -> C e. CC ) |
|
3 | mvrrsubd.1 | |- ( ph -> A = ( B - C ) ) |
|
4 | 1 2 | subcld | |- ( ph -> ( B - C ) e. CC ) |
5 | 3 4 | eqeltrd | |- ( ph -> A e. CC ) |
6 | 5 2 | addcld | |- ( ph -> ( A + C ) e. CC ) |
7 | 5 2 | pncand | |- ( ph -> ( ( A + C ) - C ) = A ) |
8 | 7 3 | eqtrd | |- ( ph -> ( ( A + C ) - C ) = ( B - C ) ) |
9 | 6 1 2 8 | subcan2d | |- ( ph -> ( A + C ) = B ) |