Metamath Proof Explorer


Theorem mvrrsubd

Description: Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses mvrrsubd.a φB
mvrrsubd.b φC
mvrrsubd.1 φA=BC
Assertion mvrrsubd φA+C=B

Proof

Step Hyp Ref Expression
1 mvrrsubd.a φB
2 mvrrsubd.b φC
3 mvrrsubd.1 φA=BC
4 1 2 subcld φBC
5 3 4 eqeltrd φA
6 5 2 addcld φA+C
7 5 2 pncand φA+C-C=A
8 7 3 eqtrd φA+C-C=BC
9 6 1 2 8 subcan2d φA+C=B