Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
|- M = ( ( ( sqrt ` ( C + ( B ^ 2 ) ) ) + ( sqrt ` ( C - ( B ^ 2 ) ) ) ) / 2 ) |
2 |
|
flt4lem5a.n |
|- N = ( ( ( sqrt ` ( C + ( B ^ 2 ) ) ) - ( sqrt ` ( C - ( B ^ 2 ) ) ) ) / 2 ) |
3 |
|
flt4lem5a.r |
|- R = ( ( ( sqrt ` ( M + N ) ) + ( sqrt ` ( M - N ) ) ) / 2 ) |
4 |
|
flt4lem5a.s |
|- S = ( ( ( sqrt ` ( M + N ) ) - ( sqrt ` ( M - N ) ) ) / 2 ) |
5 |
|
flt4lem5a.a |
|- ( ph -> A e. NN ) |
6 |
|
flt4lem5a.b |
|- ( ph -> B e. NN ) |
7 |
|
flt4lem5a.c |
|- ( ph -> C e. NN ) |
8 |
|
flt4lem5a.1 |
|- ( ph -> -. 2 || A ) |
9 |
|
flt4lem5a.2 |
|- ( ph -> ( A gcd C ) = 1 ) |
10 |
|
flt4lem5a.3 |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( C ^ 2 ) ) |
11 |
5
|
nnsqcld |
|- ( ph -> ( A ^ 2 ) e. NN ) |
12 |
6
|
nnsqcld |
|- ( ph -> ( B ^ 2 ) e. NN ) |
13 |
|
2prm |
|- 2 e. Prime |
14 |
5
|
nnzd |
|- ( ph -> A e. ZZ ) |
15 |
|
prmdvdssq |
|- ( ( 2 e. Prime /\ A e. ZZ ) -> ( 2 || A <-> 2 || ( A ^ 2 ) ) ) |
16 |
13 14 15
|
sylancr |
|- ( ph -> ( 2 || A <-> 2 || ( A ^ 2 ) ) ) |
17 |
8 16
|
mtbid |
|- ( ph -> -. 2 || ( A ^ 2 ) ) |
18 |
|
2nn |
|- 2 e. NN |
19 |
18
|
a1i |
|- ( ph -> 2 e. NN ) |
20 |
|
rplpwr |
|- ( ( A e. NN /\ C e. NN /\ 2 e. NN ) -> ( ( A gcd C ) = 1 -> ( ( A ^ 2 ) gcd C ) = 1 ) ) |
21 |
5 7 19 20
|
syl3anc |
|- ( ph -> ( ( A gcd C ) = 1 -> ( ( A ^ 2 ) gcd C ) = 1 ) ) |
22 |
9 21
|
mpd |
|- ( ph -> ( ( A ^ 2 ) gcd C ) = 1 ) |
23 |
5
|
nncnd |
|- ( ph -> A e. CC ) |
24 |
23
|
flt4lem |
|- ( ph -> ( A ^ 4 ) = ( ( A ^ 2 ) ^ 2 ) ) |
25 |
6
|
nncnd |
|- ( ph -> B e. CC ) |
26 |
25
|
flt4lem |
|- ( ph -> ( B ^ 4 ) = ( ( B ^ 2 ) ^ 2 ) ) |
27 |
24 26
|
oveq12d |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) ) |
28 |
27 10
|
eqtr3d |
|- ( ph -> ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) ) |
29 |
11 12 7 17 22 28
|
flt4lem1 |
|- ( ph -> ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) ) |
30 |
1
|
pythagtriplem11 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> M e. NN ) |
31 |
29 30
|
syl |
|- ( ph -> M e. NN ) |
32 |
31
|
nnsqcld |
|- ( ph -> ( M ^ 2 ) e. NN ) |
33 |
32
|
nncnd |
|- ( ph -> ( M ^ 2 ) e. CC ) |
34 |
2
|
pythagtriplem13 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> N e. NN ) |
35 |
29 34
|
syl |
|- ( ph -> N e. NN ) |
36 |
35
|
nnsqcld |
|- ( ph -> ( N ^ 2 ) e. NN ) |
37 |
36
|
nncnd |
|- ( ph -> ( N ^ 2 ) e. CC ) |
38 |
1 2
|
pythagtriplem15 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> ( A ^ 2 ) = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
39 |
29 38
|
syl |
|- ( ph -> ( A ^ 2 ) = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
40 |
33 37 39
|
mvrrsubd |
|- ( ph -> ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) ) |