| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem15.1 |
|- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
| 2 |
|
pythagtriplem15.2 |
|- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
| 3 |
1
|
pythagtriplem12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M ^ 2 ) = ( ( C + A ) / 2 ) ) |
| 4 |
2
|
pythagtriplem14 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( N ^ 2 ) = ( ( C - A ) / 2 ) ) |
| 5 |
3 4
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( M ^ 2 ) - ( N ^ 2 ) ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 6 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. NN ) |
| 7 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. NN ) |
| 8 |
6 7
|
nnaddcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + A ) e. NN ) |
| 9 |
8
|
nncnd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + A ) e. CC ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + A ) e. CC ) |
| 11 |
|
nnz |
|- ( C e. NN -> C e. ZZ ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 13 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 15 |
12 14
|
zsubcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - A ) e. ZZ ) |
| 16 |
15
|
zcnd |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - A ) e. CC ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - A ) e. CC ) |
| 18 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 19 |
|
divsubdir |
|- ( ( ( C + A ) e. CC /\ ( C - A ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 20 |
18 19
|
mp3an3 |
|- ( ( ( C + A ) e. CC /\ ( C - A ) e. CC ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 21 |
10 17 20
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) - ( ( C - A ) / 2 ) ) ) |
| 22 |
5 21
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( M ^ 2 ) - ( N ^ 2 ) ) = ( ( ( C + A ) - ( C - A ) ) / 2 ) ) |
| 23 |
|
nncn |
|- ( C e. NN -> C e. CC ) |
| 24 |
23
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 26 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 27 |
26
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
| 29 |
25 28 28
|
pnncand |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + A ) - ( C - A ) ) = ( A + A ) ) |
| 30 |
28
|
2timesd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. A ) = ( A + A ) ) |
| 31 |
29 30
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + A ) - ( C - A ) ) = ( 2 x. A ) ) |
| 32 |
31
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + A ) - ( C - A ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
| 33 |
|
2cn |
|- 2 e. CC |
| 34 |
|
2ne0 |
|- 2 =/= 0 |
| 35 |
|
divcan3 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 36 |
33 34 35
|
mp3an23 |
|- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
| 37 |
28 36
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 38 |
22 32 37
|
3eqtrrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |