| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem13.1 |
|- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
| 2 |
1
|
oveq1i |
|- ( N ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) |
| 3 |
|
nncn |
|- ( C e. NN -> C e. CC ) |
| 4 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 5 |
|
addcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
| 6 |
3 4 5
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 7 |
6
|
sqrtcld |
|- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 8 |
|
subcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
| 9 |
3 4 8
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 10 |
9
|
sqrtcld |
|- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 11 |
7 10
|
subcld |
|- ( ( B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 12 |
11
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 14 |
|
2cn |
|- 2 e. CC |
| 15 |
|
2ne0 |
|- 2 =/= 0 |
| 16 |
|
sqdiv |
|- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 17 |
14 15 16
|
mp3an23 |
|- ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 18 |
13 17
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 19 |
14
|
sqvali |
|- ( 2 ^ 2 ) = ( 2 x. 2 ) |
| 20 |
19
|
oveq2i |
|- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) |
| 21 |
13
|
sqcld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) e. CC ) |
| 22 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 23 |
|
divdiv1 |
|- ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 24 |
22 22 23
|
mp3an23 |
|- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) e. CC -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 25 |
21 24
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 26 |
|
simp12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
| 27 |
|
simp13 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
| 28 |
26 27 7
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 29 |
26 27 10
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 30 |
|
binom2sub |
|- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
| 31 |
28 29 30
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
| 32 |
|
nnre |
|- ( C e. NN -> C e. RR ) |
| 33 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 34 |
|
readdcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
| 35 |
32 33 34
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 36 |
35
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
| 38 |
37
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. CC ) |
| 39 |
|
resubcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
| 40 |
32 33 39
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 41 |
40
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
| 43 |
42
|
recnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. CC ) |
| 44 |
7
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 45 |
10
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 46 |
44 45
|
mulcld |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) |
| 47 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 48 |
14 46 47
|
sylancr |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 50 |
38 43 49
|
addsubd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( C - B ) ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( ( C + B ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) ) |
| 51 |
27
|
nncnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 52 |
|
simp11 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN ) |
| 53 |
52
|
nncnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
| 54 |
|
subdi |
|- ( ( 2 e. CC /\ C e. CC /\ A e. CC ) -> ( 2 x. ( C - A ) ) = ( ( 2 x. C ) - ( 2 x. A ) ) ) |
| 55 |
14 51 53 54
|
mp3an2i |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C - A ) ) = ( ( 2 x. C ) - ( 2 x. A ) ) ) |
| 56 |
|
ppncan |
|- ( ( C e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
| 57 |
56
|
3anidm13 |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
| 58 |
|
2times |
|- ( C e. CC -> ( 2 x. C ) = ( C + C ) ) |
| 59 |
58
|
adantr |
|- ( ( C e. CC /\ B e. CC ) -> ( 2 x. C ) = ( C + C ) ) |
| 60 |
57 59
|
eqtr4d |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 61 |
3 4 60
|
syl2anr |
|- ( ( B e. NN /\ C e. NN ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 62 |
61
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 63 |
62
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 64 |
26
|
nncnd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) |
| 65 |
|
subsq |
|- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 66 |
51 64 65
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 67 |
|
oveq1 |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 68 |
67
|
3ad2ant2 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 69 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 70 |
69
|
sqcld |
|- ( A e. NN -> ( A ^ 2 ) e. CC ) |
| 71 |
70
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 72 |
4
|
sqcld |
|- ( B e. NN -> ( B ^ 2 ) e. CC ) |
| 73 |
72
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 74 |
71 73
|
pncand |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 75 |
74
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 76 |
68 75
|
eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 77 |
66 76
|
eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) x. ( C - B ) ) = ( A ^ 2 ) ) |
| 78 |
77
|
fveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
| 79 |
32
|
adantl |
|- ( ( B e. NN /\ C e. NN ) -> C e. RR ) |
| 80 |
33
|
adantr |
|- ( ( B e. NN /\ C e. NN ) -> B e. RR ) |
| 81 |
|
nngt0 |
|- ( C e. NN -> 0 < C ) |
| 82 |
81
|
adantl |
|- ( ( B e. NN /\ C e. NN ) -> 0 < C ) |
| 83 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
| 84 |
83
|
adantr |
|- ( ( B e. NN /\ C e. NN ) -> 0 < B ) |
| 85 |
79 80 82 84
|
addgt0d |
|- ( ( B e. NN /\ C e. NN ) -> 0 < ( C + B ) ) |
| 86 |
|
0re |
|- 0 e. RR |
| 87 |
|
ltle |
|- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
| 88 |
86 87
|
mpan |
|- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
| 89 |
35 85 88
|
sylc |
|- ( ( B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
| 90 |
89
|
3adant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
| 91 |
90
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
| 92 |
|
pythagtriplem10 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
| 93 |
92
|
3adant3 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
| 94 |
|
ltle |
|- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
| 95 |
86 94
|
mpan |
|- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
| 96 |
42 93 95
|
sylc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
| 97 |
37 91 42 96
|
sqrtmuld |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) |
| 98 |
78 97
|
eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( A ^ 2 ) ) = ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) |
| 99 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 100 |
99
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
| 101 |
100
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. RR ) |
| 102 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
| 103 |
102
|
nn0ge0d |
|- ( A e. NN -> 0 <_ A ) |
| 104 |
103
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ A ) |
| 105 |
104
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ A ) |
| 106 |
101 105
|
sqrtsqd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
| 107 |
98 106
|
eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) = A ) |
| 108 |
107
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) = ( 2 x. A ) ) |
| 109 |
63 108
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( C - B ) ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( 2 x. C ) - ( 2 x. A ) ) ) |
| 110 |
55 109
|
eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C - A ) ) = ( ( ( C + B ) + ( C - B ) ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 111 |
|
resqrtth |
|- ( ( ( C + B ) e. RR /\ 0 <_ ( C + B ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
| 112 |
37 91 111
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
| 113 |
112
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( C + B ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 114 |
|
resqrtth |
|- ( ( ( C - B ) e. RR /\ 0 <_ ( C - B ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
| 115 |
42 96 114
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
| 116 |
113 115
|
oveq12d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( C + B ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) ) |
| 117 |
50 110 116
|
3eqtr4rd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( 2 x. ( C - A ) ) ) |
| 118 |
31 117
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( 2 x. ( C - A ) ) ) |
| 119 |
118
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) = ( ( 2 x. ( C - A ) ) / 2 ) ) |
| 120 |
|
subcl |
|- ( ( C e. CC /\ A e. CC ) -> ( C - A ) e. CC ) |
| 121 |
3 69 120
|
syl2anr |
|- ( ( A e. NN /\ C e. NN ) -> ( C - A ) e. CC ) |
| 122 |
121
|
3adant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - A ) e. CC ) |
| 123 |
122
|
3ad2ant1 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - A ) e. CC ) |
| 124 |
|
divcan3 |
|- ( ( ( C - A ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( C - A ) ) / 2 ) = ( C - A ) ) |
| 125 |
14 15 124
|
mp3an23 |
|- ( ( C - A ) e. CC -> ( ( 2 x. ( C - A ) ) / 2 ) = ( C - A ) ) |
| 126 |
123 125
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. ( C - A ) ) / 2 ) = ( C - A ) ) |
| 127 |
119 126
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) = ( C - A ) ) |
| 128 |
127
|
oveq1d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / 2 ) / 2 ) = ( ( C - A ) / 2 ) ) |
| 129 |
25 128
|
eqtr3d |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) = ( ( C - A ) / 2 ) ) |
| 130 |
20 129
|
eqtrid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( C - A ) / 2 ) ) |
| 131 |
18 130
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( C - A ) / 2 ) ) |
| 132 |
2 131
|
eqtrid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( N ^ 2 ) = ( ( C - A ) / 2 ) ) |