| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem11.1 |
⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) |
| 2 |
|
pythagtriplem9 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℕ ) |
| 3 |
2
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℤ ) |
| 4 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ 𝐴 ) |
| 5 |
|
2z |
⊢ 2 ∈ ℤ |
| 6 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 8 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 10 |
7 9
|
zaddcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 12 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 15 |
|
dvdsgcdb |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 16 |
5 11 14 15
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 17 |
16
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) → ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ) |
| 18 |
17
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) → 2 ∥ 𝐴 ) |
| 19 |
4 18
|
mtand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) |
| 20 |
|
pythagtriplem7 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) |
| 21 |
20
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 22 |
19 21
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ) |
| 23 |
|
pythagtriplem8 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℕ ) |
| 24 |
23
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℤ ) |
| 25 |
7 9
|
zsubcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 27 |
|
dvdsgcdb |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 28 |
5 26 14 27
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 29 |
28
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) → ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ) |
| 30 |
29
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) → 2 ∥ 𝐴 ) |
| 31 |
4 30
|
mtand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) |
| 32 |
|
pythagtriplem6 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) |
| 33 |
32
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 34 |
31 33
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ) |
| 35 |
|
opoe |
⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ) ∧ ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) → 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 36 |
3 22 24 34 35
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 37 |
2 23
|
nnaddcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℕ ) |
| 38 |
37
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℤ ) |
| 39 |
|
evend2 |
⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℤ → ( 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) ) |
| 41 |
36 40
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) |
| 42 |
2
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℝ ) |
| 43 |
23
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℝ ) |
| 44 |
2
|
nngt0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( √ ‘ ( 𝐶 + 𝐵 ) ) ) |
| 45 |
23
|
nngt0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( √ ‘ ( 𝐶 − 𝐵 ) ) ) |
| 46 |
42 43 44 45
|
addgt0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 47 |
37
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ ) |
| 48 |
|
halfpos2 |
⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ → ( 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 50 |
46 49
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) |
| 51 |
|
elnnz |
⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℕ ↔ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ∧ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 52 |
41 50 51
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℕ ) |
| 53 |
1 52
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑀 ∈ ℕ ) |