| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pythagtriplem11.1 | ⊢ 𝑀  =  ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( 𝑀 ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) ↑ 2 ) | 
						
							| 3 |  | nncn | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | addcl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐶  +  𝐵 )  ∈  ℂ ) | 
						
							| 6 | 3 4 5 | syl2anr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  +  𝐵 )  ∈  ℂ ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  +  𝐵 )  ∈  ℂ ) | 
						
							| 8 | 7 | sqrtcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( √ ‘ ( 𝐶  +  𝐵 ) )  ∈  ℂ ) | 
						
							| 9 |  | subcl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐶  −  𝐵 )  ∈  ℂ ) | 
						
							| 10 | 3 4 9 | syl2anr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  −  𝐵 )  ∈  ℂ ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  −  𝐵 )  ∈  ℂ ) | 
						
							| 12 | 11 | sqrtcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( √ ‘ ( 𝐶  −  𝐵 ) )  ∈  ℂ ) | 
						
							| 13 | 8 12 | addcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 15 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 16 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 17 |  | sqdiv | ⊢ ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2 ↑ 2 ) ) ) | 
						
							| 18 | 15 16 17 | mp3an23 | ⊢ ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2 ↑ 2 ) ) ) | 
						
							| 19 | 15 | sqvali | ⊢ ( 2 ↑ 2 )  =  ( 2  ·  2 ) | 
						
							| 20 | 19 | oveq2i | ⊢ ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2 ↑ 2 ) )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2  ·  2 ) ) | 
						
							| 21 | 18 20 | eqtrdi | ⊢ ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2  ·  2 ) ) ) | 
						
							| 22 | 14 21 | syl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2  ·  2 ) ) ) | 
						
							| 23 | 8 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( √ ‘ ( 𝐶  +  𝐵 ) )  ∈  ℂ ) | 
						
							| 24 | 12 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( √ ‘ ( 𝐶  −  𝐵 ) )  ∈  ℂ ) | 
						
							| 25 |  | binom2 | ⊢ ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ∈  ℂ  ∧  ( √ ‘ ( 𝐶  −  𝐵 ) )  ∈  ℂ )  →  ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  +  ( ( √ ‘ ( 𝐶  −  𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  =  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  +  ( ( √ ‘ ( 𝐶  −  𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 27 |  | nnre | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℝ ) | 
						
							| 28 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 29 |  | readdcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  +  𝐵 )  ∈  ℝ ) | 
						
							| 30 | 27 28 29 | syl2anr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  +  𝐵 )  ∈  ℝ ) | 
						
							| 31 | 30 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  +  𝐵 )  ∈  ℝ ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐶  +  𝐵 )  ∈  ℝ ) | 
						
							| 33 | 27 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐶  ∈  ℝ ) | 
						
							| 34 | 28 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 35 |  | nngt0 | ⊢ ( 𝐶  ∈  ℕ  →  0  <  𝐶 ) | 
						
							| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  0  <  𝐶 ) | 
						
							| 37 |  | nngt0 | ⊢ ( 𝐵  ∈  ℕ  →  0  <  𝐵 ) | 
						
							| 38 | 37 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  0  <  𝐵 ) | 
						
							| 39 | 33 34 36 38 | addgt0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  0  <  ( 𝐶  +  𝐵 ) ) | 
						
							| 40 | 39 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  0  <  ( 𝐶  +  𝐵 ) ) | 
						
							| 41 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 42 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐶  +  𝐵 )  ∈  ℝ )  →  ( 0  <  ( 𝐶  +  𝐵 )  →  0  ≤  ( 𝐶  +  𝐵 ) ) ) | 
						
							| 43 | 41 42 | mpan | ⊢ ( ( 𝐶  +  𝐵 )  ∈  ℝ  →  ( 0  <  ( 𝐶  +  𝐵 )  →  0  ≤  ( 𝐶  +  𝐵 ) ) ) | 
						
							| 44 | 32 40 43 | sylc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  0  ≤  ( 𝐶  +  𝐵 ) ) | 
						
							| 45 |  | resqrtth | ⊢ ( ( ( 𝐶  +  𝐵 )  ∈  ℝ  ∧  0  ≤  ( 𝐶  +  𝐵 ) )  →  ( ( √ ‘ ( 𝐶  +  𝐵 ) ) ↑ 2 )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 46 | 32 44 45 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( √ ‘ ( 𝐶  +  𝐵 ) ) ↑ 2 )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( √ ‘ ( 𝐶  +  𝐵 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  =  ( ( 𝐶  +  𝐵 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) ) ) | 
						
							| 48 |  | resubcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  −  𝐵 )  ∈  ℝ ) | 
						
							| 49 | 27 28 48 | syl2anr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  −  𝐵 )  ∈  ℝ ) | 
						
							| 50 | 49 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  −  𝐵 )  ∈  ℝ ) | 
						
							| 51 | 50 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐶  −  𝐵 )  ∈  ℝ ) | 
						
							| 52 |  | pythagtriplem10 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  0  <  ( 𝐶  −  𝐵 ) ) | 
						
							| 53 | 52 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  0  <  ( 𝐶  −  𝐵 ) ) | 
						
							| 54 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐶  −  𝐵 )  ∈  ℝ )  →  ( 0  <  ( 𝐶  −  𝐵 )  →  0  ≤  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 55 | 41 54 | mpan | ⊢ ( ( 𝐶  −  𝐵 )  ∈  ℝ  →  ( 0  <  ( 𝐶  −  𝐵 )  →  0  ≤  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 56 | 51 53 55 | sylc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  0  ≤  ( 𝐶  −  𝐵 ) ) | 
						
							| 57 |  | resqrtth | ⊢ ( ( ( 𝐶  −  𝐵 )  ∈  ℝ  ∧  0  ≤  ( 𝐶  −  𝐵 ) )  →  ( ( √ ‘ ( 𝐶  −  𝐵 ) ) ↑ 2 )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 58 | 51 56 57 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( √ ‘ ( 𝐶  −  𝐵 ) ) ↑ 2 )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 59 | 47 58 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  +  ( ( √ ‘ ( 𝐶  −  𝐵 ) ) ↑ 2 ) )  =  ( ( ( 𝐶  +  𝐵 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  +  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 60 | 7 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐶  +  𝐵 )  ∈  ℂ ) | 
						
							| 61 | 8 12 | mulcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 62 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  ∈  ℂ )  →  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) )  ∈  ℂ ) | 
						
							| 63 | 15 61 62 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) )  ∈  ℂ ) | 
						
							| 64 | 63 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) )  ∈  ℂ ) | 
						
							| 65 | 11 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐶  −  𝐵 )  ∈  ℂ ) | 
						
							| 66 | 60 64 65 | add32d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 𝐶  +  𝐵 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  +  ( 𝐶  −  𝐵 ) )  =  ( ( ( 𝐶  +  𝐵 )  +  ( 𝐶  −  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) ) ) | 
						
							| 67 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐶  ∈  ℂ ) | 
						
							| 68 | 67 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 69 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 70 | 69 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 71 | 70 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 72 |  | adddi | ⊢ ( ( 2  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 2  ·  ( 𝐶  +  𝐴 ) )  =  ( ( 2  ·  𝐶 )  +  ( 2  ·  𝐴 ) ) ) | 
						
							| 73 | 15 68 71 72 | mp3an2i | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 2  ·  ( 𝐶  +  𝐴 ) )  =  ( ( 2  ·  𝐶 )  +  ( 2  ·  𝐴 ) ) ) | 
						
							| 74 | 4 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 75 | 74 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 76 | 68 75 68 | ppncand | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐶  +  𝐵 )  +  ( 𝐶  −  𝐵 ) )  =  ( 𝐶  +  𝐶 ) ) | 
						
							| 77 | 68 | 2timesd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 2  ·  𝐶 )  =  ( 𝐶  +  𝐶 ) ) | 
						
							| 78 | 76 77 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐶  +  𝐵 )  +  ( 𝐶  −  𝐵 ) )  =  ( 2  ·  𝐶 ) ) | 
						
							| 79 |  | oveq1 | ⊢ ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐶 ↑ 2 )  −  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 80 | 79 | 3ad2ant2 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐶 ↑ 2 )  −  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 81 | 71 | sqcld | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 82 | 75 | sqcld | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 83 | 81 82 | pncand | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( 𝐵 ↑ 2 ) )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 84 |  | subsq | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐶 ↑ 2 )  −  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐶  +  𝐵 )  ·  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 85 | 68 75 84 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐶 ↑ 2 )  −  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐶  +  𝐵 )  ·  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 86 | 80 83 85 | 3eqtr3rd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐶  +  𝐵 )  ·  ( 𝐶  −  𝐵 ) )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 87 | 86 | fveq2d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( √ ‘ ( ( 𝐶  +  𝐵 )  ·  ( 𝐶  −  𝐵 ) ) )  =  ( √ ‘ ( 𝐴 ↑ 2 ) ) ) | 
						
							| 88 | 32 44 51 56 | sqrtmuld | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( √ ‘ ( ( 𝐶  +  𝐵 )  ·  ( 𝐶  −  𝐵 ) ) )  =  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) | 
						
							| 89 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 90 | 89 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 91 | 90 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 92 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 93 | 92 | nn0ge0d | ⊢ ( 𝐴  ∈  ℕ  →  0  ≤  𝐴 ) | 
						
							| 94 | 93 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  0  ≤  𝐴 ) | 
						
							| 95 | 94 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  0  ≤  𝐴 ) | 
						
							| 96 | 91 95 | sqrtsqd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( √ ‘ ( 𝐴 ↑ 2 ) )  =  𝐴 ) | 
						
							| 97 | 87 88 96 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  =  𝐴 ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) )  =  ( 2  ·  𝐴 ) ) | 
						
							| 99 | 78 98 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 𝐶  +  𝐵 )  +  ( 𝐶  −  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  =  ( ( 2  ·  𝐶 )  +  ( 2  ·  𝐴 ) ) ) | 
						
							| 100 | 73 99 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 2  ·  ( 𝐶  +  𝐴 ) )  =  ( ( ( 𝐶  +  𝐵 )  +  ( 𝐶  −  𝐵 ) )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) ) ) | 
						
							| 101 | 66 100 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 𝐶  +  𝐵 )  +  ( 2  ·  ( ( √ ‘ ( 𝐶  +  𝐵 ) )  ·  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ) )  +  ( 𝐶  −  𝐵 ) )  =  ( 2  ·  ( 𝐶  +  𝐴 ) ) ) | 
						
							| 102 | 26 59 101 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  =  ( 2  ·  ( 𝐶  +  𝐴 ) ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2  ·  2 ) )  =  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  ( 2  ·  2 ) ) ) | 
						
							| 104 |  | addcl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐶  +  𝐴 )  ∈  ℂ ) | 
						
							| 105 | 3 69 104 | syl2anr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  +  𝐴 )  ∈  ℂ ) | 
						
							| 106 | 105 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  +  𝐴 )  ∈  ℂ ) | 
						
							| 107 | 106 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐶  +  𝐴 )  ∈  ℂ ) | 
						
							| 108 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐶  +  𝐴 )  ∈  ℂ )  →  ( 2  ·  ( 𝐶  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 109 | 15 107 108 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 2  ·  ( 𝐶  +  𝐴 ) )  ∈  ℂ ) | 
						
							| 110 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 111 |  | divdiv1 | ⊢ ( ( ( 2  ·  ( 𝐶  +  𝐴 ) )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  /  2 )  =  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  ( 2  ·  2 ) ) ) | 
						
							| 112 | 110 110 111 | mp3an23 | ⊢ ( ( 2  ·  ( 𝐶  +  𝐴 ) )  ∈  ℂ  →  ( ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  /  2 )  =  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  ( 2  ·  2 ) ) ) | 
						
							| 113 | 109 112 | syl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  /  2 )  =  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  ( 2  ·  2 ) ) ) | 
						
							| 114 | 103 113 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) ) ↑ 2 )  /  ( 2  ·  2 ) )  =  ( ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  /  2 ) ) | 
						
							| 115 |  | divcan3 | ⊢ ( ( ( 𝐶  +  𝐴 )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  =  ( 𝐶  +  𝐴 ) ) | 
						
							| 116 | 15 16 115 | mp3an23 | ⊢ ( ( 𝐶  +  𝐴 )  ∈  ℂ  →  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  =  ( 𝐶  +  𝐴 ) ) | 
						
							| 117 | 107 116 | syl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  =  ( 𝐶  +  𝐴 ) ) | 
						
							| 118 | 117 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 2  ·  ( 𝐶  +  𝐴 ) )  /  2 )  /  2 )  =  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 119 | 22 114 118 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( ( √ ‘ ( 𝐶  +  𝐵 ) )  +  ( √ ‘ ( 𝐶  −  𝐵 ) ) )  /  2 ) ↑ 2 )  =  ( ( 𝐶  +  𝐴 )  /  2 ) ) | 
						
							| 120 | 2 119 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝑀 ↑ 2 )  =  ( ( 𝐶  +  𝐴 )  /  2 ) ) |