Step |
Hyp |
Ref |
Expression |
1 |
|
df-fmla |
|- Fmla = ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) |
2 |
1
|
a1i |
|- ( N e. suc _om -> Fmla = ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) ) |
3 |
|
fveq2 |
|- ( n = N -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` N ) ) |
4 |
3
|
dmeqd |
|- ( n = N -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` N ) ) |
5 |
4
|
adantl |
|- ( ( N e. suc _om /\ n = N ) -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` N ) ) |
6 |
|
id |
|- ( N e. suc _om -> N e. suc _om ) |
7 |
|
fvex |
|- ( ( (/) Sat (/) ) ` N ) e. _V |
8 |
7
|
dmex |
|- dom ( ( (/) Sat (/) ) ` N ) e. _V |
9 |
8
|
a1i |
|- ( N e. suc _om -> dom ( ( (/) Sat (/) ) ` N ) e. _V ) |
10 |
2 5 6 9
|
fvmptd |
|- ( N e. suc _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |