| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmptf.1 |  |-  F/_ x B | 
						
							| 2 |  | fmptf.2 |  |-  F = ( x e. A |-> C ) | 
						
							| 3 |  | nfv |  |-  F/ y C e. B | 
						
							| 4 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ C | 
						
							| 5 | 4 1 | nfel |  |-  F/ x [_ y / x ]_ C e. B | 
						
							| 6 |  | csbeq1a |  |-  ( x = y -> C = [_ y / x ]_ C ) | 
						
							| 7 | 6 | eleq1d |  |-  ( x = y -> ( C e. B <-> [_ y / x ]_ C e. B ) ) | 
						
							| 8 | 3 5 7 | cbvralw |  |-  ( A. x e. A C e. B <-> A. y e. A [_ y / x ]_ C e. B ) | 
						
							| 9 |  | nfcv |  |-  F/_ y C | 
						
							| 10 | 9 4 6 | cbvmpt |  |-  ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C ) | 
						
							| 11 | 2 10 | eqtri |  |-  F = ( y e. A |-> [_ y / x ]_ C ) | 
						
							| 12 | 11 | fmpt |  |-  ( A. y e. A [_ y / x ]_ C e. B <-> F : A --> B ) | 
						
							| 13 | 8 12 | bitri |  |-  ( A. x e. A C e. B <-> F : A --> B ) |