Description: The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | fndmexb | |- ( F Fn A -> ( A e. _V <-> F e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnex | |- ( ( F Fn A /\ A e. _V ) -> F e. _V ) |
|
2 | 1 | ex | |- ( F Fn A -> ( A e. _V -> F e. _V ) ) |
3 | simpr | |- ( ( F Fn A /\ F e. _V ) -> F e. _V ) |
|
4 | simpl | |- ( ( F Fn A /\ F e. _V ) -> F Fn A ) |
|
5 | 3 4 | fndmexd | |- ( ( F Fn A /\ F e. _V ) -> A e. _V ) |
6 | 5 | ex | |- ( F Fn A -> ( F e. _V -> A e. _V ) ) |
7 | 2 6 | impbid | |- ( F Fn A -> ( A e. _V <-> F e. _V ) ) |