Metamath Proof Explorer


Theorem fndmexb

Description: The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024)

Ref Expression
Assertion fndmexb
|- ( F Fn A -> ( A e. _V <-> F e. _V ) )

Proof

Step Hyp Ref Expression
1 fnex
 |-  ( ( F Fn A /\ A e. _V ) -> F e. _V )
2 1 ex
 |-  ( F Fn A -> ( A e. _V -> F e. _V ) )
3 simpr
 |-  ( ( F Fn A /\ F e. _V ) -> F e. _V )
4 simpl
 |-  ( ( F Fn A /\ F e. _V ) -> F Fn A )
5 3 4 fndmexd
 |-  ( ( F Fn A /\ F e. _V ) -> A e. _V )
6 5 ex
 |-  ( F Fn A -> ( F e. _V -> A e. _V ) )
7 2 6 impbid
 |-  ( F Fn A -> ( A e. _V <-> F e. _V ) )