Metamath Proof Explorer


Theorem fnessex

Description: If B is finer than A and S is an element of A , every point in S is an element of a subset of S which is in B . (Contributed by Jeff Hankins, 28-Sep-2009)

Ref Expression
Assertion fnessex
|- ( ( A Fne B /\ S e. A /\ P e. S ) -> E. x e. B ( P e. x /\ x C_ S ) )

Proof

Step Hyp Ref Expression
1 fnetg
 |-  ( A Fne B -> A C_ ( topGen ` B ) )
2 1 sselda
 |-  ( ( A Fne B /\ S e. A ) -> S e. ( topGen ` B ) )
3 tg2
 |-  ( ( S e. ( topGen ` B ) /\ P e. S ) -> E. x e. B ( P e. x /\ x C_ S ) )
4 2 3 stoic3
 |-  ( ( A Fne B /\ S e. A /\ P e. S ) -> E. x e. B ( P e. x /\ x C_ S ) )