| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierclimd.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierclimd.t |
|- T = ( 2 x. _pi ) |
| 3 |
|
fourierclimd.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 4 |
|
fourierclimd.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 5 |
|
fourierclimd.dmdv |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
| 6 |
|
fourierclimd.dvcn |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
| 7 |
|
fourierclimd.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 8 |
|
fourierclimd.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 9 |
|
fourierclimd.x |
|- ( ph -> X e. RR ) |
| 10 |
|
fourierclimd.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 11 |
|
fourierclimd.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 12 |
|
fourierclimd.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 13 |
|
fourierclimd.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 14 |
|
fourierclimd.s |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 15 |
|
nfcv |
|- F/_ k ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) |
| 16 |
|
nfmpt1 |
|- F/_ n ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 17 |
12 16
|
nfcxfr |
|- F/_ n A |
| 18 |
|
nfcv |
|- F/_ n k |
| 19 |
17 18
|
nffv |
|- F/_ n ( A ` k ) |
| 20 |
|
nfcv |
|- F/_ n x. |
| 21 |
|
nfcv |
|- F/_ n ( cos ` ( k x. X ) ) |
| 22 |
19 20 21
|
nfov |
|- F/_ n ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) |
| 23 |
|
nfcv |
|- F/_ n + |
| 24 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 25 |
13 24
|
nfcxfr |
|- F/_ n B |
| 26 |
25 18
|
nffv |
|- F/_ n ( B ` k ) |
| 27 |
|
nfcv |
|- F/_ n ( sin ` ( k x. X ) ) |
| 28 |
26 20 27
|
nfov |
|- F/_ n ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) |
| 29 |
22 23 28
|
nfov |
|- F/_ n ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
| 30 |
|
fveq2 |
|- ( n = k -> ( A ` n ) = ( A ` k ) ) |
| 31 |
|
oveq1 |
|- ( n = k -> ( n x. X ) = ( k x. X ) ) |
| 32 |
31
|
fveq2d |
|- ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) |
| 33 |
30 32
|
oveq12d |
|- ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) |
| 34 |
|
fveq2 |
|- ( n = k -> ( B ` n ) = ( B ` k ) ) |
| 35 |
31
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) |
| 36 |
34 35
|
oveq12d |
|- ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
| 37 |
33 36
|
oveq12d |
|- ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 38 |
15 29 37
|
cbvmpt |
|- ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( k e. NN |-> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 39 |
14 38
|
eqtri |
|- S = ( k e. NN |-> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 39
|
fourierdlem115 |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |
| 41 |
40
|
simpld |
|- ( ph -> seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |