| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem23.a |
|- ( ph -> A C_ CC ) |
| 2 |
|
fourierdlem23.f |
|- ( ph -> F e. ( A -cn-> CC ) ) |
| 3 |
|
fourierdlem23.b |
|- ( ph -> B C_ CC ) |
| 4 |
|
fourierdlem23.x |
|- ( ph -> X e. CC ) |
| 5 |
|
fourierdlem23.xps |
|- ( ( ph /\ s e. B ) -> ( X + s ) e. A ) |
| 6 |
|
eqid |
|- ( s e. B |-> ( X + s ) ) = ( s e. B |-> ( X + s ) ) |
| 7 |
6
|
addccncf2 |
|- ( ( B C_ CC /\ X e. CC ) -> ( s e. B |-> ( X + s ) ) e. ( B -cn-> CC ) ) |
| 8 |
3 4 7
|
syl2anc |
|- ( ph -> ( s e. B |-> ( X + s ) ) e. ( B -cn-> CC ) ) |
| 9 |
|
ssid |
|- B C_ B |
| 10 |
9
|
a1i |
|- ( ph -> B C_ B ) |
| 11 |
6 8 10 1 5
|
cncfmptssg |
|- ( ph -> ( s e. B |-> ( X + s ) ) e. ( B -cn-> A ) ) |
| 12 |
11 2
|
cncfcompt |
|- ( ph -> ( s e. B |-> ( F ` ( X + s ) ) ) e. ( B -cn-> CC ) ) |