| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfcompt.bcn |
|- ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) ) |
| 2 |
|
cncfcompt.f |
|- ( ph -> F e. ( C -cn-> D ) ) |
| 3 |
|
cncff |
|- ( F e. ( C -cn-> D ) -> F : C --> D ) |
| 4 |
2 3
|
syl |
|- ( ph -> F : C --> D ) |
| 5 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> F : C --> D ) |
| 6 |
|
cncff |
|- ( ( x e. A |-> B ) e. ( A -cn-> C ) -> ( x e. A |-> B ) : A --> C ) |
| 7 |
1 6
|
syl |
|- ( ph -> ( x e. A |-> B ) : A --> C ) |
| 8 |
7
|
fvmptelcdm |
|- ( ( ph /\ x e. A ) -> B e. C ) |
| 9 |
5 8
|
ffvelcdmd |
|- ( ( ph /\ x e. A ) -> ( F ` B ) e. D ) |
| 10 |
9
|
fmpttd |
|- ( ph -> ( x e. A |-> ( F ` B ) ) : A --> D ) |
| 11 |
|
cncfrss2 |
|- ( F e. ( C -cn-> D ) -> D C_ CC ) |
| 12 |
2 11
|
syl |
|- ( ph -> D C_ CC ) |
| 13 |
|
eqidd |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
| 14 |
4
|
feqmptd |
|- ( ph -> F = ( y e. C |-> ( F ` y ) ) ) |
| 15 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
| 16 |
8 13 14 15
|
fmptco |
|- ( ph -> ( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) ) |
| 17 |
|
ssid |
|- CC C_ CC |
| 18 |
|
cncfss |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( C -cn-> D ) C_ ( C -cn-> CC ) ) |
| 19 |
12 17 18
|
sylancl |
|- ( ph -> ( C -cn-> D ) C_ ( C -cn-> CC ) ) |
| 20 |
19 2
|
sseldd |
|- ( ph -> F e. ( C -cn-> CC ) ) |
| 21 |
1 20
|
cncfco |
|- ( ph -> ( F o. ( x e. A |-> B ) ) e. ( A -cn-> CC ) ) |
| 22 |
16 21
|
eqeltrrd |
|- ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
| 23 |
|
cncfcdm |
|- ( ( D C_ CC /\ ( x e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) -> ( ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) <-> ( x e. A |-> ( F ` B ) ) : A --> D ) ) |
| 24 |
12 22 23
|
syl2anc |
|- ( ph -> ( ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) <-> ( x e. A |-> ( F ` B ) ) : A --> D ) ) |
| 25 |
10 24
|
mpbird |
|- ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) ) |