Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcom.1 | |- ( ph -> A e. Fin ) | |
| fprodcom.2 | |- ( ph -> B e. Fin ) | ||
| fprodcom.3 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) | ||
| Assertion | fprodcom | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ k e. B prod_ j e. A C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fprodcom.1 | |- ( ph -> A e. Fin ) | |
| 2 | fprodcom.2 | |- ( ph -> B e. Fin ) | |
| 3 | fprodcom.3 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) | |
| 4 | 2 | adantr | |- ( ( ph /\ j e. A ) -> B e. Fin ) | 
| 5 | ancom | |- ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) | |
| 6 | 5 | a1i | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) ) | 
| 7 | 1 2 4 6 3 | fprodcom2 | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ k e. B prod_ j e. A C ) |