Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcom.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodcom.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| fprodcom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fprodcom | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ 𝐵 ∏ 𝑗 ∈ 𝐴 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fprodcom.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodcom.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | fprodcom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | 
| 5 | ancom | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) ) | 
| 7 | 1 2 4 6 3 | fprodcom2 | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ 𝐵 ∏ 𝑗 ∈ 𝐴 𝐶 ) |