Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsplit1.a | |- ( ph -> A e. Fin ) |
|
| fprodsplit1.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fprodsplit1.c | |- ( ph -> C e. A ) |
||
| fprodsplit1.d | |- ( ( ph /\ k = C ) -> B = D ) |
||
| Assertion | fprodsplit1 | |- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplit1.a | |- ( ph -> A e. Fin ) |
|
| 2 | fprodsplit1.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | fprodsplit1.c | |- ( ph -> C e. A ) |
|
| 4 | fprodsplit1.d | |- ( ( ph /\ k = C ) -> B = D ) |
|
| 5 | nfv | |- F/ k ph |
|
| 6 | nfcvd | |- ( ph -> F/_ k D ) |
|
| 7 | 5 6 1 2 3 4 | fprodsplit1f | |- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |