Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodsplit1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
fprodsplit1.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
fprodsplit1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
fprodsplit1.d | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 𝐷 ) | ||
Assertion | fprodsplit1 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit1.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
2 | fprodsplit1.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
3 | fprodsplit1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
4 | fprodsplit1.d | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 𝐷 ) | |
5 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
6 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) | |
7 | 5 6 1 2 3 4 | fprodsplit1f | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |