Metamath Proof Explorer


Theorem fprodsplit1

Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplit1.a ( 𝜑𝐴 ∈ Fin )
fprodsplit1.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
fprodsplit1.c ( 𝜑𝐶𝐴 )
fprodsplit1.d ( ( 𝜑𝑘 = 𝐶 ) → 𝐵 = 𝐷 )
Assertion fprodsplit1 ( 𝜑 → ∏ 𝑘𝐴 𝐵 = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fprodsplit1.a ( 𝜑𝐴 ∈ Fin )
2 fprodsplit1.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 fprodsplit1.c ( 𝜑𝐶𝐴 )
4 fprodsplit1.d ( ( 𝜑𝑘 = 𝐶 ) → 𝐵 = 𝐷 )
5 nfv 𝑘 𝜑
6 nfcvd ( 𝜑 𝑘 𝐷 )
7 5 6 1 2 3 4 fprodsplit1f ( 𝜑 → ∏ 𝑘𝐴 𝐵 = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) )