| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodexp.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodexp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 3 |
|
fprodexp.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
fprodexp.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) ) |
| 6 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) ) |
| 8 |
5 7
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) ) ) |
| 9 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) ) |
| 10 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) |
| 12 |
9 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) ) |
| 13 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) ) |
| 14 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) ) |
| 17 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) ) |
| 18 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) ) |
| 21 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑁 ) = 1 ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 1 ↑ 𝑁 ) ) |
| 25 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = 1 |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = 1 ) |
| 27 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
| 28 |
27
|
oveq1i |
⊢ ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
| 30 |
24 26 29
|
3eqtr4d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) ) |
| 31 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 32 |
1 31
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) |
| 33 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
| 35 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
| 37 |
36
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 38 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
| 39 |
34
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 40 |
38 39 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 41 |
40
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 42 |
32 37 41
|
fprodclf |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ) |
| 43 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝜑 ) |
| 44 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 45 |
44
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 46 |
|
nfv |
⊢ Ⅎ 𝑘 𝑧 ∈ 𝐴 |
| 47 |
1 46
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) |
| 48 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 49 |
48
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 50 |
47 49
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 51 |
|
eleq1w |
⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 52 |
51
|
anbi2d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 53 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 54 |
53
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 55 |
52 54
|
imbi12d |
⊢ ( 𝑘 = 𝑧 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 56 |
50 55 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 57 |
43 45 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 59 |
|
mulexp |
⊢ ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 60 |
42 57 58 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 61 |
60
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑘 ↑ |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑁 |
| 65 |
48 63 64
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) |
| 66 |
44
|
eldifbd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 67 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝑁 ∈ ℕ0 ) |
| 68 |
40 67
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 69 |
68
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 70 |
53
|
oveq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐵 ↑ 𝑁 ) = ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) |
| 71 |
57 58
|
expcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 72 |
32 65 37 44 66 69 70 71
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 74 |
|
oveq1 |
⊢ ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) → ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 77 |
32 48 37 44 66 41 53 57
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 79 |
78
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) |
| 80 |
62 76 79
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) |
| 81 |
80
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) ) |
| 82 |
8 12 16 20 30 81 3
|
findcard2d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) |