| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodexp.kph |
|
| 2 |
|
fprodexp.n |
|
| 3 |
|
fprodexp.a |
|
| 4 |
|
fprodexp.b |
|
| 5 |
|
prodeq1 |
|
| 6 |
|
prodeq1 |
|
| 7 |
6
|
oveq1d |
|
| 8 |
5 7
|
eqeq12d |
|
| 9 |
|
prodeq1 |
|
| 10 |
|
prodeq1 |
|
| 11 |
10
|
oveq1d |
|
| 12 |
9 11
|
eqeq12d |
|
| 13 |
|
prodeq1 |
|
| 14 |
|
prodeq1 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
13 15
|
eqeq12d |
|
| 17 |
|
prodeq1 |
|
| 18 |
|
prodeq1 |
|
| 19 |
18
|
oveq1d |
|
| 20 |
17 19
|
eqeq12d |
|
| 21 |
2
|
nn0zd |
|
| 22 |
|
1exp |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
eqcomd |
|
| 25 |
|
prod0 |
|
| 26 |
25
|
a1i |
|
| 27 |
|
prod0 |
|
| 28 |
27
|
oveq1i |
|
| 29 |
28
|
a1i |
|
| 30 |
24 26 29
|
3eqtr4d |
|
| 31 |
|
nfv |
|
| 32 |
1 31
|
nfan |
|
| 33 |
3
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
|
ssfi |
|
| 36 |
33 34 35
|
syl2anc |
|
| 37 |
36
|
adantrr |
|
| 38 |
|
simpll |
|
| 39 |
34
|
sselda |
|
| 40 |
38 39 4
|
syl2anc |
|
| 41 |
40
|
adantlrr |
|
| 42 |
32 37 41
|
fprodclf |
|
| 43 |
|
simpl |
|
| 44 |
|
simprr |
|
| 45 |
44
|
eldifad |
|
| 46 |
|
nfv |
|
| 47 |
1 46
|
nfan |
|
| 48 |
|
nfcsb1v |
|
| 49 |
48
|
nfel1 |
|
| 50 |
47 49
|
nfim |
|
| 51 |
|
eleq1w |
|
| 52 |
51
|
anbi2d |
|
| 53 |
|
csbeq1a |
|
| 54 |
53
|
eleq1d |
|
| 55 |
52 54
|
imbi12d |
|
| 56 |
50 55 4
|
chvarfv |
|
| 57 |
43 45 56
|
syl2anc |
|
| 58 |
2
|
adantr |
|
| 59 |
|
mulexp |
|
| 60 |
42 57 58 59
|
syl3anc |
|
| 61 |
60
|
eqcomd |
|
| 62 |
61
|
adantr |
|
| 63 |
|
nfcv |
|
| 64 |
|
nfcv |
|
| 65 |
48 63 64
|
nfov |
|
| 66 |
44
|
eldifbd |
|
| 67 |
2
|
ad2antrr |
|
| 68 |
40 67
|
expcld |
|
| 69 |
68
|
adantlrr |
|
| 70 |
53
|
oveq1d |
|
| 71 |
57 58
|
expcld |
|
| 72 |
32 65 37 44 66 69 70 71
|
fprodsplitsn |
|
| 73 |
72
|
adantr |
|
| 74 |
|
oveq1 |
|
| 75 |
74
|
adantl |
|
| 76 |
73 75
|
eqtrd |
|
| 77 |
32 48 37 44 66 41 53 57
|
fprodsplitsn |
|
| 78 |
77
|
adantr |
|
| 79 |
78
|
oveq1d |
|
| 80 |
62 76 79
|
3eqtr4d |
|
| 81 |
80
|
ex |
|
| 82 |
8 12 16 20 30 81 3
|
findcard2d |
|