| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodabs2.a |
|
| 2 |
|
fprodabs2.b |
|
| 3 |
|
prodeq1 |
|
| 4 |
3
|
fveq2d |
|
| 5 |
|
prodeq1 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
|
prodeq1 |
|
| 8 |
7
|
fveq2d |
|
| 9 |
|
prodeq1 |
|
| 10 |
8 9
|
eqeq12d |
|
| 11 |
|
prodeq1 |
|
| 12 |
11
|
fveq2d |
|
| 13 |
|
prodeq1 |
|
| 14 |
12 13
|
eqeq12d |
|
| 15 |
|
prodeq1 |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
prodeq1 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
|
abs1 |
|
| 20 |
|
prod0 |
|
| 21 |
20
|
fveq2i |
|
| 22 |
|
prod0 |
|
| 23 |
19 21 22
|
3eqtr4i |
|
| 24 |
23
|
a1i |
|
| 25 |
|
eqidd |
|
| 26 |
|
nfv |
|
| 27 |
|
nfcsb1v |
|
| 28 |
1
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
|
ssfi |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
31
|
adantrr |
|
| 33 |
|
simprr |
|
| 34 |
33
|
eldifbd |
|
| 35 |
|
simpll |
|
| 36 |
29
|
sselda |
|
| 37 |
36
|
adantlrr |
|
| 38 |
35 37 2
|
syl2anc |
|
| 39 |
|
csbeq1a |
|
| 40 |
|
simpl |
|
| 41 |
33
|
eldifad |
|
| 42 |
|
nfv |
|
| 43 |
27
|
nfel1 |
|
| 44 |
42 43
|
nfim |
|
| 45 |
|
eleq1w |
|
| 46 |
45
|
anbi2d |
|
| 47 |
39
|
eleq1d |
|
| 48 |
46 47
|
imbi12d |
|
| 49 |
44 48 2
|
chvarfv |
|
| 50 |
40 41 49
|
syl2anc |
|
| 51 |
26 27 32 33 34 38 39 50
|
fprodsplitsn |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
fveq2d |
|
| 54 |
26 32 38
|
fprodclf |
|
| 55 |
54 50
|
absmuld |
|
| 56 |
55
|
adantr |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
adantl |
|
| 59 |
53 56 58
|
3eqtrd |
|
| 60 |
|
nfcv |
|
| 61 |
60 27
|
nffv |
|
| 62 |
38
|
abscld |
|
| 63 |
62
|
recnd |
|
| 64 |
39
|
fveq2d |
|
| 65 |
50
|
abscld |
|
| 66 |
65
|
recnd |
|
| 67 |
26 61 32 33 34 63 64 66
|
fprodsplitsn |
|
| 68 |
67
|
adantr |
|
| 69 |
25 59 68
|
3eqtr4d |
|
| 70 |
69
|
ex |
|
| 71 |
6 10 14 18 24 70 1
|
findcard2d |
|