| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprod0.kph |
|
| 2 |
|
fprod0.kc |
|
| 3 |
|
fprod0.a |
|
| 4 |
|
fprod0.b |
|
| 5 |
|
fprod0.bc |
|
| 6 |
|
fprod0.k |
|
| 7 |
|
fprod0.c |
|
| 8 |
2
|
a1i |
|
| 9 |
5
|
adantl |
|
| 10 |
1 8 3 4 6 9
|
fprodsplit1f |
|
| 11 |
7
|
oveq1d |
|
| 12 |
|
diffi |
|
| 13 |
3 12
|
syl |
|
| 14 |
|
simpl |
|
| 15 |
|
eldifi |
|
| 16 |
15
|
adantl |
|
| 17 |
14 16 4
|
syl2anc |
|
| 18 |
1 13 17
|
fprodclf |
|
| 19 |
18
|
mul02d |
|
| 20 |
10 11 19
|
3eqtrd |
|