Metamath Proof Explorer


Theorem fprod0

Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprod0.kph kφ
fprod0.kc _kC
fprod0.a φAFin
fprod0.b φkAB
fprod0.bc k=KB=C
fprod0.k φKA
fprod0.c φC=0
Assertion fprod0 φkAB=0

Proof

Step Hyp Ref Expression
1 fprod0.kph kφ
2 fprod0.kc _kC
3 fprod0.a φAFin
4 fprod0.b φkAB
5 fprod0.bc k=KB=C
6 fprod0.k φKA
7 fprod0.c φC=0
8 2 a1i φ_kC
9 5 adantl φk=KB=C
10 1 8 3 4 6 9 fprodsplit1f φkAB=CkAKB
11 7 oveq1d φCkAKB=0kAKB
12 diffi AFinAKFin
13 3 12 syl φAKFin
14 simpl φkAKφ
15 eldifi kAKkA
16 15 adantl φkAKkA
17 14 16 4 syl2anc φkAKB
18 1 13 17 fprodclf φkAKB
19 18 mul02d φ0kAKB=0
20 10 11 19 3eqtrd φkAB=0