| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprod0.kph |
|- F/ k ph |
| 2 |
|
fprod0.kc |
|- F/_ k C |
| 3 |
|
fprod0.a |
|- ( ph -> A e. Fin ) |
| 4 |
|
fprod0.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 5 |
|
fprod0.bc |
|- ( k = K -> B = C ) |
| 6 |
|
fprod0.k |
|- ( ph -> K e. A ) |
| 7 |
|
fprod0.c |
|- ( ph -> C = 0 ) |
| 8 |
2
|
a1i |
|- ( ph -> F/_ k C ) |
| 9 |
5
|
adantl |
|- ( ( ph /\ k = K ) -> B = C ) |
| 10 |
1 8 3 4 6 9
|
fprodsplit1f |
|- ( ph -> prod_ k e. A B = ( C x. prod_ k e. ( A \ { K } ) B ) ) |
| 11 |
7
|
oveq1d |
|- ( ph -> ( C x. prod_ k e. ( A \ { K } ) B ) = ( 0 x. prod_ k e. ( A \ { K } ) B ) ) |
| 12 |
|
diffi |
|- ( A e. Fin -> ( A \ { K } ) e. Fin ) |
| 13 |
3 12
|
syl |
|- ( ph -> ( A \ { K } ) e. Fin ) |
| 14 |
|
simpl |
|- ( ( ph /\ k e. ( A \ { K } ) ) -> ph ) |
| 15 |
|
eldifi |
|- ( k e. ( A \ { K } ) -> k e. A ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ k e. ( A \ { K } ) ) -> k e. A ) |
| 17 |
14 16 4
|
syl2anc |
|- ( ( ph /\ k e. ( A \ { K } ) ) -> B e. CC ) |
| 18 |
1 13 17
|
fprodclf |
|- ( ph -> prod_ k e. ( A \ { K } ) B e. CC ) |
| 19 |
18
|
mul02d |
|- ( ph -> ( 0 x. prod_ k e. ( A \ { K } ) B ) = 0 ) |
| 20 |
10 11 19
|
3eqtrd |
|- ( ph -> prod_ k e. A B = 0 ) |