Description: The sequence S of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsubrecnncnv.1 | |- F/ k ph |
|
| fprodsubrecnncnv.2 | |- ( ph -> X e. Fin ) |
||
| fprodsubrecnncnv.3 | |- ( ( ph /\ k e. X ) -> A e. CC ) |
||
| fprodsubrecnncnv.4 | |- S = ( n e. NN |-> prod_ k e. X ( A - ( 1 / n ) ) ) |
||
| Assertion | fprodsubrecnncnv | |- ( ph -> S ~~> prod_ k e. X A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsubrecnncnv.1 | |- F/ k ph |
|
| 2 | fprodsubrecnncnv.2 | |- ( ph -> X e. Fin ) |
|
| 3 | fprodsubrecnncnv.3 | |- ( ( ph /\ k e. X ) -> A e. CC ) |
|
| 4 | fprodsubrecnncnv.4 | |- S = ( n e. NN |-> prod_ k e. X ( A - ( 1 / n ) ) ) |
|
| 5 | eqid | |- ( x e. CC |-> prod_ k e. X ( A - x ) ) = ( x e. CC |-> prod_ k e. X ( A - x ) ) |
|
| 6 | oveq2 | |- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
|
| 7 | 6 | cbvmptv | |- ( m e. NN |-> ( 1 / m ) ) = ( n e. NN |-> ( 1 / n ) ) |
| 8 | 1 2 3 4 5 7 | fprodsubrecnncnvlem | |- ( ph -> S ~~> prod_ k e. X A ) |