Metamath Proof Explorer


Theorem fprodsubrecnncnv

Description: The sequence S of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodsubrecnncnv.1 kφ
fprodsubrecnncnv.2 φXFin
fprodsubrecnncnv.3 φkXA
fprodsubrecnncnv.4 S=nkXA1n
Assertion fprodsubrecnncnv φSkXA

Proof

Step Hyp Ref Expression
1 fprodsubrecnncnv.1 kφ
2 fprodsubrecnncnv.2 φXFin
3 fprodsubrecnncnv.3 φkXA
4 fprodsubrecnncnv.4 S=nkXA1n
5 eqid xkXAx=xkXAx
6 oveq2 m=n1m=1n
7 6 cbvmptv m1m=n1n
8 1 2 3 4 5 7 fprodsubrecnncnvlem φSkXA