Metamath Proof Explorer


Theorem fpwfvss

Description: Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024)

Ref Expression
Hypothesis fpwfvss.f
|- F : C --> ~P B
Assertion fpwfvss
|- ( F ` A ) C_ B

Proof

Step Hyp Ref Expression
1 fpwfvss.f
 |-  F : C --> ~P B
2 1 ffvelcdmi
 |-  ( A e. C -> ( F ` A ) e. ~P B )
3 2 elpwid
 |-  ( A e. C -> ( F ` A ) C_ B )
4 1 fdmi
 |-  dom F = C
5 4 eleq2i
 |-  ( A e. dom F <-> A e. C )
6 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
7 5 6 sylnbir
 |-  ( -. A e. C -> ( F ` A ) = (/) )
8 0ss
 |-  (/) C_ B
9 7 8 eqsstrdi
 |-  ( -. A e. C -> ( F ` A ) C_ B )
10 3 9 pm2.61i
 |-  ( F ` A ) C_ B