| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fraclt1 |
|- ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) |
| 2 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 3 |
|
resubcl |
|- ( ( A e. RR /\ ( |_ ` A ) e. RR ) -> ( A - ( |_ ` A ) ) e. RR ) |
| 4 |
2 3
|
mpdan |
|- ( A e. RR -> ( A - ( |_ ` A ) ) e. RR ) |
| 5 |
|
1re |
|- 1 e. RR |
| 6 |
|
ltle |
|- ( ( ( A - ( |_ ` A ) ) e. RR /\ 1 e. RR ) -> ( ( A - ( |_ ` A ) ) < 1 -> ( A - ( |_ ` A ) ) <_ 1 ) ) |
| 7 |
4 5 6
|
sylancl |
|- ( A e. RR -> ( ( A - ( |_ ` A ) ) < 1 -> ( A - ( |_ ` A ) ) <_ 1 ) ) |
| 8 |
1 7
|
mpd |
|- ( A e. RR -> ( A - ( |_ ` A ) ) <_ 1 ) |