Metamath Proof Explorer


Theorem frege10

Description: Result commuting antecedents within an antecedent. Proposition 10 of Frege1879 p. 36. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege10
|- ( ( ( ph -> ( ps -> ch ) ) -> th ) -> ( ( ps -> ( ph -> ch ) ) -> th ) )

Proof

Step Hyp Ref Expression
1 ax-frege8
 |-  ( ( ps -> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) )
2 frege9
 |-  ( ( ( ps -> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> th ) -> ( ( ps -> ( ph -> ch ) ) -> th ) ) )
3 1 2 ax-mp
 |-  ( ( ( ph -> ( ps -> ch ) ) -> th ) -> ( ( ps -> ( ph -> ch ) ) -> th ) )