Metamath Proof Explorer


Theorem frege10

Description: Result commuting antecedents within an antecedent. Proposition 10 of Frege1879 p. 36. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege10 ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → 𝜃 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 ax-frege8 ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
2 frege9 ( ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → 𝜃 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → 𝜃 ) ) )
3 1 2 ax-mp ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → 𝜃 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → 𝜃 ) )