Description: Result commuting antecedents within an antecedent. Proposition 10 of Frege1879 p. 36. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege10 | ⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → 𝜃 ) → ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege8 | ⊢ ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
2 | frege9 | ⊢ ( ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → 𝜃 ) → ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → 𝜃 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → 𝜃 ) → ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → 𝜃 ) ) |