Metamath Proof Explorer


Theorem frege124

Description: If X is a result of an application of the single-valued procedure R to Y and if M follows Y in the R -sequence, then M belongs to the R -sequence beginning with X . Proposition 124 of Frege1879 p. 80. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x
|- X e. U
frege123.y
|- Y e. V
frege124.m
|- M e. W
frege124.r
|- R e. S
Assertion frege124
|- ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) )

Proof

Step Hyp Ref Expression
1 frege123.x
 |-  X e. U
2 frege123.y
 |-  Y e. V
3 frege124.m
 |-  M e. W
4 frege124.r
 |-  R e. S
5 1 2 3 4 frege110
 |-  ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) )
6 1 2 frege123
 |-  ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) )
7 5 6 ax-mp
 |-  ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) )