Description: Lemma for frege124 . Proposition 123 of Frege1879 p. 79. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege123.x | |- X e. U | |
| frege123.y | |- Y e. V | ||
| Assertion | frege123 | |- ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege123.x | |- X e. U | |
| 2 | frege123.y | |- Y e. V | |
| 3 | vex | |- a e. _V | |
| 4 | 1 2 3 | frege122 | |- ( Fun `' `' R -> ( Y R X -> ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) ) ) | 
| 5 | 4 | alrimdv | |- ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) ) ) | 
| 6 | frege19 | |- ( ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) ) ) -> ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) ) ) | |
| 7 | 5 6 | ax-mp | |- ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) ) |