Description: Lemma for frege124 . Proposition 123 of Frege1879 p. 79. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege123.x | |- X e. U |
|
frege123.y | |- Y e. V |
||
Assertion | frege123 | |- ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege123.x | |- X e. U |
|
2 | frege123.y | |- Y e. V |
|
3 | vex | |- a e. _V |
|
4 | 1 2 3 | frege122 | |- ( Fun `' `' R -> ( Y R X -> ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) ) ) |
5 | 4 | alrimdv | |- ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) ) ) |
6 | frege19 | |- ( ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) ) ) -> ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) ) ) |
|
7 | 5 6 | ax-mp | |- ( ( A. a ( Y R a -> X ( ( t+ ` R ) u. _I ) a ) -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y ( t+ ` R ) M -> X ( ( t+ ` R ) u. _I ) M ) ) ) ) |