Metamath Proof Explorer


Theorem frege123

Description: Lemma for frege124 . Proposition 123 of Frege1879 p. 79. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
Assertion frege123 ( ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) → ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege123.x 𝑋𝑈
2 frege123.y 𝑌𝑉
3 vex 𝑎 ∈ V
4 1 2 3 frege122 ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) )
5 4 alrimdv ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) )
6 frege19 ( ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) → ( ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) → ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) ) ) )
7 5 6 ax-mp ( ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) → ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) ) )