Metamath Proof Explorer


Theorem frege29

Description: Closed form of con3d . Proposition 29 of Frege1879 p. 43. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege29
|- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( -. ch -> -. ps ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege28
 |-  ( ( ps -> ch ) -> ( -. ch -> -. ps ) )
2 frege5
 |-  ( ( ( ps -> ch ) -> ( -. ch -> -. ps ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( -. ch -> -. ps ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( -. ch -> -. ps ) ) )