Metamath Proof Explorer


Theorem frege59b

Description: A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition 59 of Frege1879 p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege59b
|- ( [ y / x ] ph -> ( -. [ y / x ] ps -> -. A. x ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 frege58bcor
 |-  ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) )
2 frege30
 |-  ( ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) -> ( [ y / x ] ph -> ( -. [ y / x ] ps -> -. A. x ( ph -> ps ) ) ) )
3 1 2 ax-mp
 |-  ( [ y / x ] ph -> ( -. [ y / x ] ps -> -. A. x ( ph -> ps ) ) )