Description: A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition 59 of Frege1879 p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege59b | |- ( [ y / x ] ph -> ( -. [ y / x ] ps -> -. A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58bcor | |- ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
2 | frege30 | |- ( ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) -> ( [ y / x ] ph -> ( -. [ y / x ] ps -> -. A. x ( ph -> ps ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( [ y / x ] ph -> ( -. [ y / x ] ps -> -. A. x ( ph -> ps ) ) ) |