Step |
Hyp |
Ref |
Expression |
1 |
|
ax-frege58b |
|- ( A. x ( ph -> ( ps -> ch ) ) -> [ y / x ] ( ph -> ( ps -> ch ) ) ) |
2 |
|
sbim |
|- ( [ y / x ] ( ph -> ( ps -> ch ) ) <-> ( [ y / x ] ph -> [ y / x ] ( ps -> ch ) ) ) |
3 |
|
sbim |
|- ( [ y / x ] ( ps -> ch ) <-> ( [ y / x ] ps -> [ y / x ] ch ) ) |
4 |
3
|
imbi2i |
|- ( ( [ y / x ] ph -> [ y / x ] ( ps -> ch ) ) <-> ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) ) |
5 |
2 4
|
bitri |
|- ( [ y / x ] ( ph -> ( ps -> ch ) ) <-> ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) ) |
6 |
1 5
|
sylib |
|- ( A. x ( ph -> ( ps -> ch ) ) -> ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) ) |
7 |
|
frege12 |
|- ( ( A. x ( ph -> ( ps -> ch ) ) -> ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) ) -> ( A. x ( ph -> ( ps -> ch ) ) -> ( [ y / x ] ps -> ( [ y / x ] ph -> [ y / x ] ch ) ) ) ) |
8 |
6 7
|
ax-mp |
|- ( A. x ( ph -> ( ps -> ch ) ) -> ( [ y / x ] ps -> ( [ y / x ] ph -> [ y / x ] ch ) ) ) |