| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-frege58b |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → [ 𝑦 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
| 2 |
|
sbim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ) |
| 3 |
|
sbim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 4 |
3
|
imbi2i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 5 |
2 4
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 6 |
1 5
|
sylib |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 7 |
|
frege12 |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) → ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜓 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜓 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |