Metamath Proof Explorer


Theorem frege60b

Description: Swap antecedents of ax-frege58b . Proposition 60 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege60b ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜓 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58b ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → [ 𝑦 / 𝑥 ] ( 𝜑 → ( 𝜓𝜒 ) ) )
2 sbim ( [ 𝑦 / 𝑥 ] ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜓𝜒 ) ) )
3 sbim ( [ 𝑦 / 𝑥 ] ( 𝜓𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) )
4 3 imbi2i ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜓𝜒 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) )
5 2 4 bitri ( [ 𝑦 / 𝑥 ] ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) )
6 1 5 sylib ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) )
7 frege12 ( ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) → ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜓 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) )
8 6 7 ax-mp ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜓 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜒 ) ) )