Metamath Proof Explorer


Theorem frege62b

Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara when the minor premise has a particular context. Proposition 62 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege62b
|- ( [ y / x ] ph -> ( A. x ( ph -> ps ) -> [ y / x ] ps ) )

Proof

Step Hyp Ref Expression
1 frege58bcor
 |-  ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) )
2 ax-frege8
 |-  ( ( A. x ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) -> ( [ y / x ] ph -> ( A. x ( ph -> ps ) -> [ y / x ] ps ) ) )
3 1 2 ax-mp
 |-  ( [ y / x ] ph -> ( A. x ( ph -> ps ) -> [ y / x ] ps ) )