Metamath Proof Explorer


Theorem frege63b

Description: Lemma for frege91 . Proposition 63 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege63b
|- ( [ y / x ] ph -> ( ps -> ( A. x ( ph -> ch ) -> [ y / x ] ch ) ) )

Proof

Step Hyp Ref Expression
1 frege62b
 |-  ( [ y / x ] ph -> ( A. x ( ph -> ch ) -> [ y / x ] ch ) )
2 frege24
 |-  ( ( [ y / x ] ph -> ( A. x ( ph -> ch ) -> [ y / x ] ch ) ) -> ( [ y / x ] ph -> ( ps -> ( A. x ( ph -> ch ) -> [ y / x ] ch ) ) ) )
3 1 2 ax-mp
 |-  ( [ y / x ] ph -> ( ps -> ( A. x ( ph -> ch ) -> [ y / x ] ch ) ) )