Description: Lemma for frege65b . Proposition 64 of Frege1879 p. 53. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege64b | |- ( ( [ x / y ] ph -> [ z / y ] ps ) -> ( A. y ( ps -> ch ) -> ( [ x / y ] ph -> [ z / y ] ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62b | |- ( [ z / y ] ps -> ( A. y ( ps -> ch ) -> [ z / y ] ch ) ) |
|
2 | frege18 | |- ( ( [ z / y ] ps -> ( A. y ( ps -> ch ) -> [ z / y ] ch ) ) -> ( ( [ x / y ] ph -> [ z / y ] ps ) -> ( A. y ( ps -> ch ) -> ( [ x / y ] ph -> [ z / y ] ch ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( [ x / y ] ph -> [ z / y ] ps ) -> ( A. y ( ps -> ch ) -> ( [ x / y ] ph -> [ z / y ] ch ) ) ) |