Metamath Proof Explorer


Theorem frege64b

Description: Lemma for frege65b . Proposition 64 of Frege1879 p. 53. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege64b
|- ( ( [ x / y ] ph -> [ z / y ] ps ) -> ( A. y ( ps -> ch ) -> ( [ x / y ] ph -> [ z / y ] ch ) ) )

Proof

Step Hyp Ref Expression
1 frege62b
 |-  ( [ z / y ] ps -> ( A. y ( ps -> ch ) -> [ z / y ] ch ) )
2 frege18
 |-  ( ( [ z / y ] ps -> ( A. y ( ps -> ch ) -> [ z / y ] ch ) ) -> ( ( [ x / y ] ph -> [ z / y ] ps ) -> ( A. y ( ps -> ch ) -> ( [ x / y ] ph -> [ z / y ] ch ) ) ) )
3 1 2 ax-mp
 |-  ( ( [ x / y ] ph -> [ z / y ] ps ) -> ( A. y ( ps -> ch ) -> ( [ x / y ] ph -> [ z / y ] ch ) ) )