Description: Lemma for frege65b . Proposition 64 of Frege1879 p. 53. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege64b | ⊢ ( ( [ 𝑥 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] 𝜓 ) → ( ∀ 𝑦 ( 𝜓 → 𝜒 ) → ( [ 𝑥 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62b | ⊢ ( [ 𝑧 / 𝑦 ] 𝜓 → ( ∀ 𝑦 ( 𝜓 → 𝜒 ) → [ 𝑧 / 𝑦 ] 𝜒 ) ) | |
2 | frege18 | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝜓 → ( ∀ 𝑦 ( 𝜓 → 𝜒 ) → [ 𝑧 / 𝑦 ] 𝜒 ) ) → ( ( [ 𝑥 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] 𝜓 ) → ( ∀ 𝑦 ( 𝜓 → 𝜒 ) → ( [ 𝑥 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] 𝜒 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( [ 𝑥 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] 𝜓 ) → ( ∀ 𝑦 ( 𝜓 → 𝜒 ) → ( [ 𝑥 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] 𝜒 ) ) ) |