Metamath Proof Explorer


Theorem frege91

Description: Every result of an application of a procedure R to an object X follows that X in the R -sequence. Proposition 91 of Frege1879 p. 68. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x
|- X e. U
frege91.y
|- Y e. V
frege91.r
|- R e. W
Assertion frege91
|- ( X R Y -> X ( t+ ` R ) Y )

Proof

Step Hyp Ref Expression
1 frege91.x
 |-  X e. U
2 frege91.y
 |-  Y e. V
3 frege91.r
 |-  R e. W
4 2 frege63c
 |-  ( [. Y / a ]. X R a -> ( R hereditary f -> ( A. a ( X R a -> a e. f ) -> [. Y / a ]. a e. f ) ) )
5 sbcbr2g
 |-  ( Y e. V -> ( [. Y / a ]. X R a <-> X R [_ Y / a ]_ a ) )
6 csbvarg
 |-  ( Y e. V -> [_ Y / a ]_ a = Y )
7 6 breq2d
 |-  ( Y e. V -> ( X R [_ Y / a ]_ a <-> X R Y ) )
8 5 7 bitrd
 |-  ( Y e. V -> ( [. Y / a ]. X R a <-> X R Y ) )
9 2 8 ax-mp
 |-  ( [. Y / a ]. X R a <-> X R Y )
10 sbcel1v
 |-  ( [. Y / a ]. a e. f <-> Y e. f )
11 10 imbi2i
 |-  ( ( A. a ( X R a -> a e. f ) -> [. Y / a ]. a e. f ) <-> ( A. a ( X R a -> a e. f ) -> Y e. f ) )
12 11 imbi2i
 |-  ( ( R hereditary f -> ( A. a ( X R a -> a e. f ) -> [. Y / a ]. a e. f ) ) <-> ( R hereditary f -> ( A. a ( X R a -> a e. f ) -> Y e. f ) ) )
13 4 9 12 3imtr3i
 |-  ( X R Y -> ( R hereditary f -> ( A. a ( X R a -> a e. f ) -> Y e. f ) ) )
14 13 alrimiv
 |-  ( X R Y -> A. f ( R hereditary f -> ( A. a ( X R a -> a e. f ) -> Y e. f ) ) )
15 1 2 3 frege90
 |-  ( ( X R Y -> A. f ( R hereditary f -> ( A. a ( X R a -> a e. f ) -> Y e. f ) ) ) -> ( X R Y -> X ( t+ ` R ) Y ) )
16 14 15 ax-mp
 |-  ( X R Y -> X ( t+ ` R ) Y )