| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege91.x |
|- X e. U |
| 2 |
|
frege91.y |
|- Y e. V |
| 3 |
|
frege91.r |
|- R e. W |
| 4 |
|
vex |
|- w e. _V |
| 5 |
4 2 3
|
frege91 |
|- ( w R Y -> w ( t+ ` R ) Y ) |
| 6 |
5
|
sbcth |
|- ( X e. U -> [. X / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) |
| 7 |
|
frege53c |
|- ( [. X / w ]. ( w R Y -> w ( t+ ` R ) Y ) -> ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) ) |
| 8 |
6 7
|
syl |
|- ( X e. U -> ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) ) |
| 9 |
|
sbcim1 |
|- ( [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) -> ( [. Z / w ]. w R Y -> [. Z / w ]. w ( t+ ` R ) Y ) ) |
| 10 |
9
|
imim2i |
|- ( ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) -> ( X = Z -> ( [. Z / w ]. w R Y -> [. Z / w ]. w ( t+ ` R ) Y ) ) ) |
| 11 |
|
dfsbcq |
|- ( X = Z -> ( [. X / w ]. w R Y <-> [. Z / w ]. w R Y ) ) |
| 12 |
|
sbcbr1g |
|- ( X e. U -> ( [. X / w ]. w R Y <-> [_ X / w ]_ w R Y ) ) |
| 13 |
|
csbvarg |
|- ( X e. U -> [_ X / w ]_ w = X ) |
| 14 |
13
|
breq1d |
|- ( X e. U -> ( [_ X / w ]_ w R Y <-> X R Y ) ) |
| 15 |
12 14
|
bitrd |
|- ( X e. U -> ( [. X / w ]. w R Y <-> X R Y ) ) |
| 16 |
1 15
|
ax-mp |
|- ( [. X / w ]. w R Y <-> X R Y ) |
| 17 |
11 16
|
bitr3di |
|- ( X = Z -> ( [. Z / w ]. w R Y <-> X R Y ) ) |
| 18 |
|
eqcom |
|- ( X = Z <-> Z = X ) |
| 19 |
18
|
biimpi |
|- ( X = Z -> Z = X ) |
| 20 |
19 1
|
eqeltrdi |
|- ( X = Z -> Z e. U ) |
| 21 |
|
sbcbr1g |
|- ( Z e. U -> ( [. Z / w ]. w ( t+ ` R ) Y <-> [_ Z / w ]_ w ( t+ ` R ) Y ) ) |
| 22 |
|
csbvarg |
|- ( Z e. U -> [_ Z / w ]_ w = Z ) |
| 23 |
22
|
breq1d |
|- ( Z e. U -> ( [_ Z / w ]_ w ( t+ ` R ) Y <-> Z ( t+ ` R ) Y ) ) |
| 24 |
21 23
|
bitrd |
|- ( Z e. U -> ( [. Z / w ]. w ( t+ ` R ) Y <-> Z ( t+ ` R ) Y ) ) |
| 25 |
20 24
|
syl |
|- ( X = Z -> ( [. Z / w ]. w ( t+ ` R ) Y <-> Z ( t+ ` R ) Y ) ) |
| 26 |
17 25
|
imbi12d |
|- ( X = Z -> ( ( [. Z / w ]. w R Y -> [. Z / w ]. w ( t+ ` R ) Y ) <-> ( X R Y -> Z ( t+ ` R ) Y ) ) ) |
| 27 |
10 26
|
mpbidi |
|- ( ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) -> ( X = Z -> ( X R Y -> Z ( t+ ` R ) Y ) ) ) |
| 28 |
1 8 27
|
mp2b |
|- ( X = Z -> ( X R Y -> Z ( t+ ` R ) Y ) ) |