Step |
Hyp |
Ref |
Expression |
1 |
|
frege91.x |
|- X e. U |
2 |
|
frege91.y |
|- Y e. V |
3 |
|
frege91.r |
|- R e. W |
4 |
|
vex |
|- w e. _V |
5 |
4 2 3
|
frege91 |
|- ( w R Y -> w ( t+ ` R ) Y ) |
6 |
5
|
sbcth |
|- ( X e. U -> [. X / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) |
7 |
|
frege53c |
|- ( [. X / w ]. ( w R Y -> w ( t+ ` R ) Y ) -> ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) ) |
8 |
6 7
|
syl |
|- ( X e. U -> ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) ) |
9 |
|
sbcim1 |
|- ( [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) -> ( [. Z / w ]. w R Y -> [. Z / w ]. w ( t+ ` R ) Y ) ) |
10 |
9
|
imim2i |
|- ( ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) -> ( X = Z -> ( [. Z / w ]. w R Y -> [. Z / w ]. w ( t+ ` R ) Y ) ) ) |
11 |
|
dfsbcq |
|- ( X = Z -> ( [. X / w ]. w R Y <-> [. Z / w ]. w R Y ) ) |
12 |
|
sbcbr1g |
|- ( X e. U -> ( [. X / w ]. w R Y <-> [_ X / w ]_ w R Y ) ) |
13 |
|
csbvarg |
|- ( X e. U -> [_ X / w ]_ w = X ) |
14 |
13
|
breq1d |
|- ( X e. U -> ( [_ X / w ]_ w R Y <-> X R Y ) ) |
15 |
12 14
|
bitrd |
|- ( X e. U -> ( [. X / w ]. w R Y <-> X R Y ) ) |
16 |
1 15
|
ax-mp |
|- ( [. X / w ]. w R Y <-> X R Y ) |
17 |
11 16
|
bitr3di |
|- ( X = Z -> ( [. Z / w ]. w R Y <-> X R Y ) ) |
18 |
|
eqcom |
|- ( X = Z <-> Z = X ) |
19 |
18
|
biimpi |
|- ( X = Z -> Z = X ) |
20 |
19 1
|
eqeltrdi |
|- ( X = Z -> Z e. U ) |
21 |
|
sbcbr1g |
|- ( Z e. U -> ( [. Z / w ]. w ( t+ ` R ) Y <-> [_ Z / w ]_ w ( t+ ` R ) Y ) ) |
22 |
|
csbvarg |
|- ( Z e. U -> [_ Z / w ]_ w = Z ) |
23 |
22
|
breq1d |
|- ( Z e. U -> ( [_ Z / w ]_ w ( t+ ` R ) Y <-> Z ( t+ ` R ) Y ) ) |
24 |
21 23
|
bitrd |
|- ( Z e. U -> ( [. Z / w ]. w ( t+ ` R ) Y <-> Z ( t+ ` R ) Y ) ) |
25 |
20 24
|
syl |
|- ( X = Z -> ( [. Z / w ]. w ( t+ ` R ) Y <-> Z ( t+ ` R ) Y ) ) |
26 |
17 25
|
imbi12d |
|- ( X = Z -> ( ( [. Z / w ]. w R Y -> [. Z / w ]. w ( t+ ` R ) Y ) <-> ( X R Y -> Z ( t+ ` R ) Y ) ) ) |
27 |
10 26
|
mpbidi |
|- ( ( X = Z -> [. Z / w ]. ( w R Y -> w ( t+ ` R ) Y ) ) -> ( X = Z -> ( X R Y -> Z ( t+ ` R ) Y ) ) ) |
28 |
1 8 27
|
mp2b |
|- ( X = Z -> ( X R Y -> Z ( t+ ` R ) Y ) ) |