Metamath Proof Explorer


Theorem frege53c

Description: Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53c
|- ( [. A / x ]. ph -> ( A = B -> [. B / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 ax-frege52c
 |-  ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) )
2 ax-frege8
 |-  ( ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) -> ( [. A / x ]. ph -> ( A = B -> [. B / x ]. ph ) ) )
3 1 2 ax-mp
 |-  ( [. A / x ]. ph -> ( A = B -> [. B / x ]. ph ) )