Metamath Proof Explorer


Theorem frege53c

Description: Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53c [˙A / x]˙ φ A = B [˙B / x]˙ φ

Proof

Step Hyp Ref Expression
1 ax-frege52c A = B [˙A / x]˙ φ [˙B / x]˙ φ
2 ax-frege8 A = B [˙A / x]˙ φ [˙B / x]˙ φ [˙A / x]˙ φ A = B [˙B / x]˙ φ
3 1 2 ax-mp [˙A / x]˙ φ A = B [˙B / x]˙ φ