Metamath Proof Explorer


Theorem frege53c

Description: Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53c ( [ 𝐴 / 𝑥 ] 𝜑 → ( 𝐴 = 𝐵[ 𝐵 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-frege52c ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑥 ] 𝜑 ) )
2 ax-frege8 ( ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑥 ] 𝜑 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → ( 𝐴 = 𝐵[ 𝐵 / 𝑥 ] 𝜑 ) ) )
3 1 2 ax-mp ( [ 𝐴 / 𝑥 ] 𝜑 → ( 𝐴 = 𝐵[ 𝐵 / 𝑥 ] 𝜑 ) )